あなたのテストエンジンはどのように実行しますか?
あなたのPCにダウンロードしてインストールすると、Snowflake DSA-C03テスト問題を練習し、'練習試験'と '仮想試験'2つの異なるオプションを使用してあなたの質問と回答を確認することができます。
仮想試験 - 時間制限付きに試験問題で自分自身をテストします。
練習試験 - 試験問題を1つ1つレビューし、正解をビューします。
DSA-C03テストエンジンはどのシステムに適用しますか?
オンラインテストエンジンは、WEBブラウザをベースとしたソフトウェアなので、Windows / Mac / Android / iOSなどをサポートできます。どんな電設備でも使用でき、自己ペースで練習できます。オンラインテストエンジンはオフラインの練習をサポートしていますが、前提条件は初めてインターネットで実行することです。
ソフトテストエンジンは、Java環境で運行するWindowsシステムに適用して、複数のコンピュータにインストールすることができます。
PDF版は、Adobe ReaderやFoxit Reader、Google Docsなどの読書ツールに読むことができます。
割引はありますか?
我々社は顧客にいくつかの割引を提供します。 特恵には制限はありません。 弊社のサイトで定期的にチェックしてクーポンを入手することができます。
あなたはDSA-C03試験参考書の更新をどのぐらいでリリースしていますか?
すべての試験参考書は常に更新されますが、固定日付には更新されません。弊社の専門チームは、試験のアップデートに十分の注意を払い、彼らは常にそれに応じてDSA-C03試験内容をアップグレードします。
購入後、どれくらいDSA-C03試験参考書を入手できますか?
あなたは5-10分以内にSnowflake DSA-C03試験参考書を付くメールを受信します。そして即時ダウンロードして勉強します。購入後にDSA-C03試験参考書を入手しないなら、すぐにメールでお問い合わせください。
返金するポリシーはありますか? 失敗した場合、どうすれば返金できますか?
はい。弊社はあなたが我々の練習問題を使用して試験に合格しないと全額返金を保証します。返金プロセスは非常に簡単です:購入日から60日以内に不合格成績書を弊社に送っていいです。弊社は成績書を確認した後で、返金を行います。お金は7日以内に支払い口座に戻ります。
更新されたDSA-C03試験参考書を得ることができ、取得方法?
はい、購入後に1年間の無料アップデートを享受できます。更新があれば、私たちのシステムは更新されたDSA-C03試験参考書をあなたのメールボックスに自動的に送ります。
Tech4Examはどんな試験参考書を提供していますか?
テストエンジン:DSA-C03試験試験エンジンは、あなた自身のデバイスにダウンロードして運行できます。インタラクティブでシミュレートされた環境でテストを行います。
PDF(テストエンジンのコピー):内容はテストエンジンと同じで、印刷をサポートしています。
Snowflake SnowPro Advanced: Data Scientist Certification 認定 DSA-C03 試験問題:
1. You are tasked with developing a multi-class image classification model to categorize product images stored in Snowflake external stage. The categories are 'Electronics', 'Clothing', 'Furniture', 'Books', and 'Food'. You plan to use a pre-trained Convolutional Neural Network (CNN) model and fine-tune it using your dataset. However, you're facing challenges in efficiently loading and preprocessing the image data within the Snowflake environment before feeding it to your model. Which of the following approaches would be MOST efficient for image data loading and preprocessing in Snowflake, minimizing data movement and leveraging Snowflake's scalability, for a large dataset exceeding 1 TB of images?
A) Create a Snowflake Stream to continuously ingest new images into a Snowflake table. Use a task to periodically trigger a Python UDF that preprocesses the newly ingested images and stores them in another table for model training.
B) Download all the images from the external stage to a local machine, preprocess them using a standard Python library like OpenCV, and then upload the processed data back into Snowflake as a table for model training.
C) Write a Python User-Defined Function (UDF) that loads each image from the external stage directly into memory, performs preprocessing (resizing, normalization), and returns the processed image data. The UDF is then called in a SQL query to process the image data.
D) Utilize Snowflake's external function integration with AWS Lambda to preprocess images as they are uploaded to S3, storing the preprocessed data back in S3 and creating an external table pointing to the preprocessed data.
E) Use Snowflake's Snowpark to read images from the external stage into a Snowpark DataFrame. Then, implement image preprocessing using Snowpark DataFrame operations, such as resizing and normalization, within the DataFrame transformations before sending the data to the model.
2. You are tasked with building a data science pipeline in Snowflake to predict customer churn. You have trained a scikit-learn model and want to deploy it using a Python UDTF for real-time predictions. The model expects a specific feature vector format. You've defined a UDTF named 'PREDICT CHURN' that loads the model and makes predictions. However, when you call the UDTF with data from a table, you encounter inconsistent prediction results across different rows, even when the input features seem identical. Which of the following are the most likely reasons for this behavior and how would you address them?
A) The issue is related to the immutability of the Snowflake execution environment for UDTFs. To resolve this, cache the loaded model instance within the UDTF's constructor and reuse it for subsequent predictions. Using a global variable is also acceptable.
B) The input feature data types in the table do not match the expected data types by the scikit-learn model. Cast the input columns to the correct data types (e.g., FLOAT, INT) before passing them to the UDTF. Use explicit casting functions like 'TO DOUBLE and INTEGER in your SQL query.
C) The UDTF is not partitioning data correctly. Ensure the UDTF utilizes the 'PARTITION BY clause in your SQL query based on a relevant dimension (e.g., 'customer_id') to prevent state inconsistencies across partitions. This will isolate the impact of any statefulness within the function
D) There may be an error in model, where the 'predict method is producing different ouputs for the same inputs. Retraining the model will resolve the issue.
E) The scikit-learn model was not properly serialized and deserialized within the UDTF. Ensure the model is saved using 'joblib' or 'pickle' with appropriate settings for cross-platform compatibility and loaded correctly within the UDTF's 'process' method. Verify serialization/deserialization by testing it independently from Snowflake first.
3. You are tasked with forecasting the daily sales of a specific product for the next 30 days using Snowflake. You have historical sales data for the past 3 years, stored in a Snowflake table named 'SALES DATA', with columns 'SALE DATE (DATE type) and 'SALES AMOUNT' (NUMBER type). You want to use the Prophet library within a Snowflake User-Defined Function (UDF) for forecasting. The Prophet model requires the input data to have columns named 'ds' (for dates) and 'y' (for values). Which of the following code snippets demonstrates the CORRECT way to prepare and pass your data to the Prophet UDF in Snowflake, assuming you've already created the Python UDF 'prophet_forecast'?
A)
B)
C)
D)
E)
4. You have a Snowflake table 'PRODUCT_PRICES' with columns 'PRODUCT_ID' (INTEGER) and 'PRICE' (VARCHAR). The 'PRICE' column sometimes contains values like '10.50 USD', '20.00 EUR', or 'Invalid Price'. You need to convert the 'PRICE column to a NUMERIC(10,2) data type, removing currency symbols and handling invalid price strings by replacing them with NULL. Considering both data preparation and feature engineering, which combination of Snowpark SQL and Python code snippets achieves this accurately and efficiently, preparing the data for further analysis?
A) Option E
B) Option B
C) Option D
D) Option C
E) Option A
5. A Data Scientist is designing a machine learning model to predict customer churn for a telecommunications company. They have access to various data sources, including call logs, billing information, customer demographics, and support tickets, all residing in separate Snowflake tables. The data scientist aims to minimize bias and ensure data quality during the data collection phase. Which of the following strategies would be MOST effective for collecting and preparing the data for model training?
A) Use Snowflake's Data Marketplace to supplement the existing data with external datasets, regardless of their relevance to the churn prediction problem.
B) Perform exploratory data analysis (EDA) on each table to identify relevant features and potential biases. Use feature selection techniques to reduce dimensionality. Implement robust data validation checks to ensure data quality and consistency before joining the tables. Handle missing values strategically based on the specific column and its potential impact on the model.
C) Create a single, wide table by performing a series of INNER JOINs on all tables using customer ID as the primary key. Handle missing values by imputing with the mean for numerical columns and 'Unknown' for categorical columns.
D) Randomly select a subset of data from each table to reduce computational complexity and speed up model training.
E) Directly use all available columns from each table without any preprocessing to avoid introducing bias.
質問と回答:
質問 # 1 正解: D、E | 質問 # 2 正解: B、E | 質問 # 3 正解: C | 質問 # 4 正解: A | 質問 # 5 正解: B |