あなたはDEA-C02試験参考書の更新をどのぐらいでリリースしていますか?
すべての試験参考書は常に更新されますが、固定日付には更新されません。弊社の専門チームは、試験のアップデートに十分の注意を払い、彼らは常にそれに応じてDEA-C02試験内容をアップグレードします。
更新されたDEA-C02試験参考書を得ることができ、取得方法?
はい、購入後に1年間の無料アップデートを享受できます。更新があれば、私たちのシステムは更新されたDEA-C02試験参考書をあなたのメールボックスに自動的に送ります。
Tech4Examはどんな試験参考書を提供していますか?
テストエンジン:DEA-C02試験試験エンジンは、あなた自身のデバイスにダウンロードして運行できます。インタラクティブでシミュレートされた環境でテストを行います。
PDF(テストエンジンのコピー):内容はテストエンジンと同じで、印刷をサポートしています。
あなたのテストエンジンはどのように実行しますか?
あなたのPCにダウンロードしてインストールすると、Snowflake DEA-C02テスト問題を練習し、'練習試験'と '仮想試験'2つの異なるオプションを使用してあなたの質問と回答を確認することができます。
仮想試験 - 時間制限付きに試験問題で自分自身をテストします。
練習試験 - 試験問題を1つ1つレビューし、正解をビューします。
購入後、どれくらいDEA-C02試験参考書を入手できますか?
あなたは5-10分以内にSnowflake DEA-C02試験参考書を付くメールを受信します。そして即時ダウンロードして勉強します。購入後にDEA-C02試験参考書を入手しないなら、すぐにメールでお問い合わせください。
返金するポリシーはありますか? 失敗した場合、どうすれば返金できますか?
はい。弊社はあなたが我々の練習問題を使用して試験に合格しないと全額返金を保証します。返金プロセスは非常に簡単です:購入日から60日以内に不合格成績書を弊社に送っていいです。弊社は成績書を確認した後で、返金を行います。お金は7日以内に支払い口座に戻ります。
DEA-C02テストエンジンはどのシステムに適用しますか?
オンラインテストエンジンは、WEBブラウザをベースとしたソフトウェアなので、Windows / Mac / Android / iOSなどをサポートできます。どんな電設備でも使用でき、自己ペースで練習できます。オンラインテストエンジンはオフラインの練習をサポートしていますが、前提条件は初めてインターネットで実行することです。
ソフトテストエンジンは、Java環境で運行するWindowsシステムに適用して、複数のコンピュータにインストールすることができます。
PDF版は、Adobe ReaderやFoxit Reader、Google Docsなどの読書ツールに読むことができます。
割引はありますか?
我々社は顧客にいくつかの割引を提供します。 特恵には制限はありません。 弊社のサイトで定期的にチェックしてクーポンを入手することができます。
Snowflake SnowPro Advanced: Data Engineer (DEA-C02) 認定 DEA-C02 試験問題:
1. You have a Snowflake table 'ORDERS with columns 'ORDER ID, 'CUSTOMER ID', 'ORDER DATE, and 'TOTAL AMOUNT. You notice that many queries filtering by 'ORDER DATE are slow, even after enabling query acceleration. You decide to implement a caching strategy to improve performance. Which of the following approaches will be most effective in leveraging Snowflake's caching capabilities and improving the performance of date-filtered queries, especially when the data volume for each date is large and varied? Assume virtual warehouse is medium size.
A) Apply a WHERE clause with a date range in all the SELECT statements. This forces the metadata caching.
B) Increase the data retention period for the 'ORDERS' table. A longer retention period will ensure that more data is available in the Snowflake cache.
C) Create a clustered table on 'ORDER_DATE. This will physically organize the data on disk, allowing Snowflake to quickly retrieve the relevant data for date- filtered queries.
D) Use after running a query filtered by 'ORDER_DATE'. This will cache the result of the query in the current session for subsequent queries with the same filter.
E) Create a materialized view that pre-aggregates the data by 'ORDER_DATE , such as calculating the sum of 'TOTAL_AMOUNT for each date. This will allow Snowflake to serve the results directly from the materialized view for queries that require aggregation.
2. A data engineer is tasked with implementing a data governance strategy in Snowflake. They need to automatically apply a tag 'PII CLASSIFICATION' to all columns containing Personally Identifiable Information (PII). Given the following requirements: 1. The tag must be applied as close to data ingestion as possible. 2. The tagging process should be automated and scalable. 3. The tag value should be dynamically set based on a regular expression match against column names and data types. Which of the following approaches would be MOST effective and efficient in achieving these goals?
A) Create a Snowflake Task that runs daily, querying the INFORMATION SCHEMCOLUMNS view, identifying potential PII columns based on regular expressions, and then executing ALTER TABLE ... ALTER COLUMN ... SET TAG commands.
B) Manually tag each column containing PII using the Snowflake web UI or the 'ALTER TABLE ... ALTER COLUMN ... SET TAG' command. Train data stewards to identify and tag new columns.
C) Implement a custom application using the Snowflake JDBC driver to periodically scan table schemas, detect PII columns, and apply tags using dynamic SQL.
D) Use Snowflake's Event Tables in conjunction with a stream and task. Configure the stream to capture DDL changes, and the task to evaluate new columns and apply the tag based on the column metadata using regular expressions.
E) Implement a stored procedure that leverages external functions to call a Python script hosted on AWS Lambda, which uses a machine learning model to identify PII and apply Snowflake tags.
3. You are using Snowpark Python to transform a DataFrame 'df_orderS containing order data'. You need to filter the DataFrame to include only orders with a total amount greater than $1000 and placed within the last 30 days. Assume the DataFrame has columns 'order_id', 'order_date' (timestamp), and 'total_amount' (numeric). Which of the following code snippets is the MOST efficient and correct way to achieve this filtering using Snowpark?
A) Option E
B) Option B
C) Option D
D) Option C
E) Option A
4. You are building a data pipeline in Snowflake that uses an external function to perform sentiment analysis on customer reviews stored in a table named 'CUSTOMER REVIEWS'. The external function 'sentiment_analyzer' is hosted on AWS Lambda and requires an API key for authentication. You want to ensure that the API key is securely passed to the Lambda function and prevent unauthorized access. Which of the following approaches represents the MOST secure and recommended method to manage the API key?
A) Embed the API key directly into the AWS Lambda function's environment variables, avoiding any transmission from Snowflake.
B) Store the API key directly in the external function definition as a string literal within the 'AS' clause.
C) Create a Snowflake secret object to store the API key and reference it in the external function definition using the 'USING' clause and 'SYSTEM$GET SECRET function.
D) Pass the API key as a parameter to the external function each time it is called.
E) Store the API key in a Snowflake table with restricted access and retrieve it within the external function's logic.
5. You are designing a Snowflake data pipeline that continuously ingests clickstream dat a. You need to monitor the pipeline for latency and throughput, and trigger notifications if these metrics fall outside acceptable ranges. Which of the following combinations of Snowflake features and techniques would be MOST effective for achieving this goal?
A) Create a custom dashboard using a Bl tool that connects to Snowflake via JDBC/ODBC and visualizes data ingestion and processing metrics. Manually monitor the dashboard for anomalies.
B) Rely on Snowflake's default resource monitors to track warehouse usage. If warehouse usage exceeds a certain threshold, assume there are performance issues and send a notification.
C) Implement a combination of Snowflake Streams, Tasks, and external functions. Streams capture changes, Tasks process the changes, and external functions send notifications to a monitoring service when latency or throughput issues are detected.
D) Use Snowflake's Event Tables and Event Notifications to capture events related to data ingestion and processing. Configure alerts based on event patterns that indicate latency or throughput issues.
E) Use Snowflake's 'QUERY_HISTORY view to track query execution times and implement a scheduled task that queries this view, calculates latency and throughput, and sends email notifications using Snowflake's built-in email integration if thresholds are exceeded.
質問と回答:
質問 # 1 正解: C | 質問 # 2 正解: D | 質問 # 3 正解: C | 質問 # 4 正解: C | 質問 # 5 正解: C、D |