DEA-C02試験学習資料を開発する専業チーム
私たちはDEA-C02試験認定分野でよく知られる会社として、プロのチームにSnowPro Advanced: Data Engineer (DEA-C02)試験復習問題の研究と開発に専念する多くの専門家があります。したがって、我々のSnowPro Advanced試験学習資料がDEA-C02試験の一流復習資料であることを保証することができます。私たちは、SnowPro Advanced DEA-C02試験サンプル問題の研究に約10年間集中して、候補者がDEA-C02試験に合格するという目標を決して変更しません。私たちのDEA-C02試験学習資料の質は、Snowflake専門家の努力によって保証されています。それで、あなたは弊社を信じて、我々のSnowPro Advanced: Data Engineer (DEA-C02)最新テスト問題集を選んでいます。
Tech4Examはどんな学習資料を提供していますか?
現代技術は人々の生活と働きの仕方を革新します(DEA-C02試験学習資料)。 広く普及しているオンラインシステムとプラットフォームは最近の現象となり、IT業界は最も見通しがある業界(DEA-C02試験認定)となっています。 企業や機関では、候補者に優れた教育の背景が必要であるという事実にもかかわらず、プロフェッショナル認定のようなその他の要件があります。それを考慮すると、適切なSnowflake SnowPro Advanced: Data Engineer (DEA-C02)試験認定は候補者が高給と昇進を得られるのを助けます。
DEA-C02試験認定を取られるメリット
ほとんどの企業では従業員が専門試験の認定資格を取得する必要があるため、DEA-C02試験の認定資格がどれほど重要であるかわかります。テストに合格すれば、昇進のチャンスとより高い給料を得ることができます。あなたのプロフェッショナルな能力が権威によって認められると、それはあなたが急速に発展している情報技術に優れていることを意味し、上司や大学から注目を受けます。より明るい未来とより良い生活のために私たちの信頼性の高いDEA-C02最新試験問題集を選択しましょう。
無料デモをごダウンロードいただけます
様々な復習資料が市場に出ていることから、多くの候補者は、どの資料が適切かを知りません。この状況を考慮に入れて、私たちはSnowflake DEA-C02の無料ダウンロードデモを候補者に提供します。弊社のウェブサイトにアクセスしてSnowPro Advanced: Data Engineer (DEA-C02)デモをダウンロードするだけで、DEA-C02試験復習問題を購入するかどうかを判断するのに役立ちます。多数の新旧の顧客の訪問が当社の能力を証明しています。私たちのDEA-C02試験の学習教材は、私たちの市場におけるファーストクラスのものであり、あなたにとっても良い選択だと確信しています。
SnowPro Advanced: Data Engineer (DEA-C02)試験学習資料での高い復習効率
ほとんどの候補者にとって、特にオフィスワーカー、DEA-C02試験の準備は、多くの時間とエネルギーを必要とする難しい作業です。だから、適切なDEA-C02試験資料を選択することは、DEA-C02試験にうまく合格するのに重要です。高い正確率があるDEA-C02有効学習資料によって、候補者はSnowPro Advanced: Data Engineer (DEA-C02)試験のキーポイントを捉え、試験の内容を熟知します。あなたは約2日の時間をかけて我々のDEA-C02試験学習資料を練習し、DEA-C02試験に簡単でパスします。
Snowflake SnowPro Advanced: Data Engineer (DEA-C02) 認定 DEA-C02 試験問題:
1. You are tasked with building a Snowpipe to ingest JSON data from an AWS S3 bucket into a Snowflake table named 'SALES DATA'. The data is landing in the bucket frequently, and you want to use Snowpipe's auto-ingest feature. However, you are observing significant latency in data appearing in your Snowflake table after it lands in S3, despite verifying that S3 event notifications are correctly configured and the Snowflake event queue is receiving them. You've already checked that the pipe is enabled and has the necessary permissions. The Snowflake Pipe definition is as follows:
What is the MOST LIKELY reason for this delay, and what steps can you take to further troubleshoot?
A) The Snowflake virtual warehouse associated with the pipe is undersized. Increase the warehouse size to improve ingestion performance.
B) The S3 bucket is not in the same region as the Snowflake account. Ensure the S3 bucket and Snowflake account are in the same region to reduce network latency.
C) Snowflake's internal metadata cache is out of sync. Run 'ALTER PIPE SALES PIPE to refresh the cache.
D) There is a backlog of files in the internal Snowflake queue waiting to be processed. Monitor the 'SYSTEM$PIPE STATUS' function and consider increasing the 'MAX CONCURRENCY' parameter (if applicable, based on underlying infrastructure considerations) on the pipe definition.
E) Snowpipe auto-ingest only supports CSV files. Convert your JSON data to CSV format before loading.
2. You are building a data pipeline in Snowflake using Snowpark Python. As part of the pipeline, you need to create a dynamic SQL query to filter records from a table named 'PRODUCT REVIEWS based on a list of product categories. The list of categories is passed to a stored procedure as a string argument, where categories are comma separated. The filtered data needs to be further processed within the stored procedure. Which of the following approaches are MOST efficient and secure ways to construct and execute this dynamic SQL query using Snowpark?
A) Using Python's string formatting along with the and 'session.sql()' functions to build and execute the SQL query securely, avoiding SQL injection vulnerabilities.
B) Using Python's string formatting to build the SQL query directly, and then executing it using 'session.sql()'.
C) Using Snowpark's on the list of product categories after converting them into a Snowflake array, and then using 'session.sql()' to execute the query.
D) Using the Snowpark "functions.lit()' function to create literal values from the list of product categories and incorporating them into the SQL query, then use 'session.sql()' to run it.
E) Constructing the SQL query using 'session.sql()' and string concatenation, ensuring proper escaping of single quotes within the product categories string.
3. You're building a data product on the Snowflake Marketplace that includes a view that aggregates data from a table containing Personally Identifiable Information (PII). You need to ensure that consumers of your data product CANNOT directly access the underlying PII data but can only see the aggregated results from the view. What is the MOST secure and recommended approach to achieve this?
A) Create a stored procedure that returns the aggregated data, and grant EXECUTE privilege on the stored procedure to the share. The stored procedure SELECTs from the PII table.
B) Grant USAGE privilege on the database containing the PII table and to the share.
C) Grant 'READ privilege on the internal stage containing the data files backing the PII table.
D) Grant the 'SELECT privilege directly on the underlying PII table to the share used for the Marketplace listing, along with the 'SELECT privilege on 'sensitive data view'.
E) Grant the 'SELECT privilege only on the to the share used for the Marketplace listing. Do not grant any privileges on the underlying PII table.
4. You are tasked with creating a Snowpark Python UDF that calculates the exponential moving average (EMA) of a time series dataset stored in a Snowflake table named 'SALES DATA'. The table has columns 'TIMESTAMP' (TIMESTAMP_NTZ) and 'SALES' (NUMBER). The EMA should be calculated for each product, identified by the 'PRODUCT ID' column. You want to optimize the calculation by using a Pandas DataFrame within the UDF and leveraging vectorized operations. Which of the following code snippets would be the MOST efficient and correct way to achieve this? Assume 'alpha' is a predefined float variable representing the smoothing factor.
A) Option E
B) Option B
C) Option D
D) Option C
E) Option A
5. You are using the Snowflake Spark connector to update records in a Snowflake table based on data from a Spark DataFrame. The Snowflake table 'CUSTOMER' has columns 'CUSTOMER ID' (primary key), 'NAME, and 'ADDRESS'. You have a Spark DataFrame with updated 'NAME and 'ADDRESS' values for some customers. To optimize performance and minimize data transfer, which of the following strategies can you combine with a temporary staging table to perform an efficient update?
A) Use Spark's foreachPartition to batch update statements and execute on each partition. This will help with efficient data transfer and avoid single row based updates.
B) Write the Spark DataFrame to a temporary table in Snowflake using MERGE. Use the WHEN MATCHED clause for Update the target table based on updates from staging table and finally drop the staging table
C) Write the Spark DataFrame to a temporary table in Snowflake. Then, execute an 'UPDATE statement in Snowflake joining the temporary table with the 'CUSTOMER table using the 'CUSTOMER_ID to update the 'NAME and 'ADDRESS' columns. Finally, drop the temporary table.
D) Broadcast the Spark DataFrame to all executor nodes, then use a UDF to execute the 'UPDATE' statement for each row directly from Spark.
E) Iterate through each row in the Spark DataFrame and execute an individual 'UPDATE statement against the 'CUSTOMER table in Snowflake. Use the 'CUSTOMER_ID in the 'WHERE clause.
質問と回答:
質問 # 1 正解: D | 質問 # 2 正解: A、D | 質問 # 3 正解: E | 質問 # 4 正解: A | 質問 # 5 正解: B、C |