割引はありますか?
我々社は顧客にいくつかの割引を提供します。 特恵には制限はありません。 弊社のサイトで定期的にチェックしてクーポンを入手することができます。
更新されたDatabricks-Certified-Data-Engineer-Professional試験参考書を得ることができ、取得方法?
はい、購入後に1年間の無料アップデートを享受できます。更新があれば、私たちのシステムは更新されたDatabricks-Certified-Data-Engineer-Professional試験参考書をあなたのメールボックスに自動的に送ります。
あなたはDatabricks-Certified-Data-Engineer-Professional試験参考書の更新をどのぐらいでリリースしていますか?
すべての試験参考書は常に更新されますが、固定日付には更新されません。弊社の専門チームは、試験のアップデートに十分の注意を払い、彼らは常にそれに応じてDatabricks-Certified-Data-Engineer-Professional試験内容をアップグレードします。
Tech4Examはどんな試験参考書を提供していますか?
テストエンジン:Databricks-Certified-Data-Engineer-Professional試験試験エンジンは、あなた自身のデバイスにダウンロードして運行できます。インタラクティブでシミュレートされた環境でテストを行います。
PDF(テストエンジンのコピー):内容はテストエンジンと同じで、印刷をサポートしています。
あなたのテストエンジンはどのように実行しますか?
あなたのPCにダウンロードしてインストールすると、Databricks Databricks-Certified-Data-Engineer-Professionalテスト問題を練習し、'練習試験'と '仮想試験'2つの異なるオプションを使用してあなたの質問と回答を確認することができます。
仮想試験 - 時間制限付きに試験問題で自分自身をテストします。
練習試験 - 試験問題を1つ1つレビューし、正解をビューします。
Databricks-Certified-Data-Engineer-Professionalテストエンジンはどのシステムに適用しますか?
オンラインテストエンジンは、WEBブラウザをベースとしたソフトウェアなので、Windows / Mac / Android / iOSなどをサポートできます。どんな電設備でも使用でき、自己ペースで練習できます。オンラインテストエンジンはオフラインの練習をサポートしていますが、前提条件は初めてインターネットで実行することです。
ソフトテストエンジンは、Java環境で運行するWindowsシステムに適用して、複数のコンピュータにインストールすることができます。
PDF版は、Adobe ReaderやFoxit Reader、Google Docsなどの読書ツールに読むことができます。
購入後、どれくらいDatabricks-Certified-Data-Engineer-Professional試験参考書を入手できますか?
あなたは5-10分以内にDatabricks Databricks-Certified-Data-Engineer-Professional試験参考書を付くメールを受信します。そして即時ダウンロードして勉強します。購入後にDatabricks-Certified-Data-Engineer-Professional試験参考書を入手しないなら、すぐにメールでお問い合わせください。
返金するポリシーはありますか? 失敗した場合、どうすれば返金できますか?
はい。弊社はあなたが我々の練習問題を使用して試験に合格しないと全額返金を保証します。返金プロセスは非常に簡単です:購入日から60日以内に不合格成績書を弊社に送っていいです。弊社は成績書を確認した後で、返金を行います。お金は7日以内に支払い口座に戻ります。
Databricks Certified Data Engineer Professional 認定 Databricks-Certified-Data-Engineer-Professional 試験問題:
1. A data ingestion task requires a one-TB JSON dataset to be written out to Parquet with a target Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from part- file size of 512 MB. Because Parquet is being used instead of Delta Lake, built-in file-sizing features such as Auto-Optimize & Auto-Compaction cannot be used.
Which strategy will yield the best performance without shuffling data?
A) Set spark.sql.shuffle.partitions to 2,048 partitions (1TB*1024*1024/512), ingest the data, execute the narrow transformations, optimize the data by sorting it (which automatically repartitions the data), and then write to parquet.
B) Ingest the data, execute the narrow transformations, repartition to 2,048 partitions (1TB*
1024*1024/512), and then write to parquet.
C) Set spark.sql.shuffle.partitions to 512, ingest the data, execute the narrow transformations, and then write to parquet.
D) Set spark.sql.files.maxPartitionBytes to 512 MB, ingest the data, execute the narrow transformations, and then write to parquet.
E) Set spark.sql.adaptive.advisoryPartitionSizeInBytes to 512 MB bytes, ingest the data, execute the narrow transformations, coalesce to 2,048 partitions (1TB*1024*1024/512), and then write to parquet.
2. A Structured Streaming job deployed to production has been resulting in higher than expected cloud storage costs. At present, during normal execution, each microbatch of data is processed in less than 3s; at least 12 times per minute, a microbatch is processed that contains 0 records. The streaming write was configured using the default trigger settings. The production job is currently scheduled alongside many other Databricks jobs in a workspace with instance pools provisioned to reduce start-up time for jobs with batch execution.
Holding all other variables constant and assuming records need to be processed in less than 10 minutes, which adjustment will meet the requirement?
A) Increase the number of shuffle partitions to maximize parallelism, since the trigger interval cannot be modified without modifying the checkpoint directory.
B) Use the trigger once option and configure a Databricks job to execute the query every 10 minutes; this approach minimizes costs for both compute and storage.
C) Set the trigger interval to 3 seconds; the default trigger interval is consuming too many records per batch, resulting in spill to disk that can increase volume costs.
D) Set the trigger interval to 10 minutes; each batch calls APIs in the source storage account, so decreasing trigger frequency to maximum allowable threshold should minimize this cost.
E) Set the trigger interval to 500 milliseconds; setting a small but non-zero trigger interval ensures that the source is not queried too frequently.
3. The data engineering team has configured a job to process customer requests to be forgotten (have their data deleted). All user data that needs to be deleted is stored in Delta Lake tables using default table settings.
The team has decided to process all deletions from the previous week as a batch job at 1am each Sunday. The total duration of this job is less than one hour. Every Monday at 3am, a batch job executes a series of VACUUM commands on all Delta Lake tables throughout the organization.
The compliance officer has recently learned about Delta Lake's time travel functionality. They are concerned that this might allow continued access to deleted data.
Assuming all delete logic is correctly implemented, which statement correctly addresses this concern?
A) Because the default data retention threshold is 24 hours, data files containing deleted records will be retained until the vacuum job is run the following day.
B) Because Delta Lake's delete statements have ACID guarantees, deleted records will be permanently purged from all storage systems as soon as a delete job completes.
C) Because the default data retention threshold is 7 days, data files containing deleted records will be retained until the vacuum job is run 8 days later.Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from
D) Because Delta Lake time travel provides full access to the entire history of a table, deleted records can always be recreated by users with full admin privileges.
E) Because the vacuum command permanently deletes all files containing deleted records, deleted records may be accessible with time travel for around 24 hours.
4. A Delta Lake table representing metadata about content from user has the following schema:
Based on the above schema, which column is a good candidate for partitioning the Delta Table?
A) Post_time
B) latitude
C) Post_id
D) Date
E) User_id
5. The data architect has mandated that all tables in the Lakehouse should be configured as external (also known as "unmanaged") Delta Lake tables.
Which approach will ensure that this requirement is met?
A) When configuring an external data warehouse for all table storage, leverage Databricks for all ELT.
B) When the workspace is being configured, make sure that external cloud object storage has been mounted.
C) When a database is being created, make sure that the LOCATION keyword is used.
D) When data is saved to a table, make sure that a full file path is specified alongside the Delta format.
E) When tables are created, make sure that the EXTERNAL keyword is used in the CREATE TABLE statement.
質問と回答:
質問 # 1 正解: A | 質問 # 2 正解: D | 質問 # 3 正解: C | 質問 # 4 正解: D | 質問 # 5 正解: E |