Tech4Examはどんな学習資料を提供していますか?
現代技術は人々の生活と働きの仕方を革新します(DSA-C03試験学習資料)。 広く普及しているオンラインシステムとプラットフォームは最近の現象となり、IT業界は最も見通しがある業界(DSA-C03試験認定)となっています。 企業や機関では、候補者に優れた教育の背景が必要であるという事実にもかかわらず、プロフェッショナル認定のようなその他の要件があります。それを考慮すると、適切なSnowflake SnowPro Advanced: Data Scientist Certification Exam試験認定は候補者が高給と昇進を得られるのを助けます。
SnowPro Advanced: Data Scientist Certification Exam試験学習資料での高い復習効率
ほとんどの候補者にとって、特にオフィスワーカー、DSA-C03試験の準備は、多くの時間とエネルギーを必要とする難しい作業です。だから、適切なDSA-C03試験資料を選択することは、DSA-C03試験にうまく合格するのに重要です。高い正確率があるDSA-C03有効学習資料によって、候補者はSnowPro Advanced: Data Scientist Certification Exam試験のキーポイントを捉え、試験の内容を熟知します。あなたは約2日の時間をかけて我々のDSA-C03試験学習資料を練習し、DSA-C03試験に簡単でパスします。
無料デモをごダウンロードいただけます
様々な復習資料が市場に出ていることから、多くの候補者は、どの資料が適切かを知りません。この状況を考慮に入れて、私たちはSnowflake DSA-C03の無料ダウンロードデモを候補者に提供します。弊社のウェブサイトにアクセスしてSnowPro Advanced: Data Scientist Certification Examデモをダウンロードするだけで、DSA-C03試験復習問題を購入するかどうかを判断するのに役立ちます。多数の新旧の顧客の訪問が当社の能力を証明しています。私たちのDSA-C03試験の学習教材は、私たちの市場におけるファーストクラスのものであり、あなたにとっても良い選択だと確信しています。
DSA-C03試験認定を取られるメリット
ほとんどの企業では従業員が専門試験の認定資格を取得する必要があるため、DSA-C03試験の認定資格がどれほど重要であるかわかります。テストに合格すれば、昇進のチャンスとより高い給料を得ることができます。あなたのプロフェッショナルな能力が権威によって認められると、それはあなたが急速に発展している情報技術に優れていることを意味し、上司や大学から注目を受けます。より明るい未来とより良い生活のために私たちの信頼性の高いDSA-C03最新試験問題集を選択しましょう。
DSA-C03試験学習資料を開発する専業チーム
私たちはDSA-C03試験認定分野でよく知られる会社として、プロのチームにSnowPro Advanced: Data Scientist Certification Exam試験復習問題の研究と開発に専念する多くの専門家があります。したがって、我々のSnowPro Advanced試験学習資料がDSA-C03試験の一流復習資料であることを保証することができます。私たちは、SnowPro Advanced DSA-C03試験サンプル問題の研究に約10年間集中して、候補者がDSA-C03試験に合格するという目標を決して変更しません。私たちのDSA-C03試験学習資料の質は、Snowflake専門家の努力によって保証されています。それで、あなたは弊社を信じて、我々のSnowPro Advanced: Data Scientist Certification Exam最新テスト問題集を選んでいます。
Snowflake SnowPro Advanced: Data Scientist Certification 認定 DSA-C03 試験問題:
1. You've deployed a regression model in Snowflake to predict product sales. After a month, you observe that the RMSE on your validation dataset has increased significantly compared to the initial deployment. Analyzing the prediction errors, you notice a pattern: the model consistently underestimates sales for products with a recent surge in social media mentions. Which of the following actions would be MOST effective in addressing this issue and improving the model's RMSE?
A) Retrain the model using only the most recent data (e.g., last week) to adapt to the changing sales patterns.
B) Decrease the learning rate of the optimization algorithm during retraining to avoid overshooting the optimal weights.
C) Increase the regularization strength of the model to prevent overfitting to the original training data.
D) Incorporate a feature representing the number of social media mentions for each product into the model and retrain.
E) Implement a moving average smoothing technique on the target variable (sales) before retraining the model.
2. A telecom company, 'ConnectPlus', observes that the individual call durations of its customers are heavily skewed towards shorter calls, following an exponential distribution. A data science team aims to analyze call patterns and requires to perform hypothesis testing on the average call duration. Which of the following statements regarding the applicability of the Central Limit Theorem (CLT) in this scenario are correct if the sample size is sufficiently large?
A) The CLT is applicable, and the distribution of sample means of call durations will approximate a normal distribution, regardless of the skewness of the individual call durations.
B) The CLT is applicable only if the sample size is extremely large (e.g., greater than 10,000), due to the exponential distribution's heavy tail.
C) The CLT is applicable, and the sample mean will converge to the population median.
D) The CLT is applicable as long as the sample size is reasonably large (typically n > 30), and the distribution of sample means will be approximately normal. The specific minimum sample size depends on the severity of the skewness.
E) The CLT is not applicable because the population distribution (call durations) is heavily skewed.
3. A retail company is using Snowflake to store transaction data'. They want to create a derived feature called 'customer _ recency' to represent the number of days since a customer's last purchase. The transactions table 'TRANSACTIONS has columns 'customer_id' (INT) and 'transaction_date' (DATE). Which of the following SQL queries is the MOST efficient and scalable way to derive this feature as a materialized view in Snowflake?
A) Option E
B) Option B
C) Option D
D) Option C
E) Option A
4. You've built a customer churn prediction model in Snowflake, and are using the AUC as your primary performance metric. You notice that your model consistently performs well (AUC > 0.85) on your validation set but significantly worse (AUC < 0.7) in production. What are the possible reasons for this discrepancy? (Select all that apply)
A) The production environment has significantly more missing data compared to the training and validation environments.
B) The AUC metric is inherently unreliable and should not be used for model evaluation.
C) Your model is overfitting to the validation data. This causes to give high performance on validation set but less accurate in the real world.
D) Your training and validation sets are not representative of the real-world production data due to sampling bias.
E) There's a temporal bias: the customer behavior patterns have changed since the training data was collected.
5. A data scientist is tasked with predicting customer churn for a telecommunications company using Snowflake. The dataset contains call detail records (CDRs), customer demographic information, and service usage data'. Initial analysis reveals a high degree of multicollinearity between several features, specifically 'total_day_minutes', 'total_eve_minutes', and 'total_night_minutes'. Additionally, the 'state' feature has a large number of distinct values. Which of the following feature engineering techniques would be MOST effective in addressing these issues to improve model performance, considering efficient execution within Snowflake?
A) Apply min-max scaling to the CDR features to normalize them and use label encoding for the 'state' feature. Train a decision tree model, as it is robust to multicollinearity.
B) Calculate the Variance Inflation Factor (VIF) for each CDR feature and drop the feature with the highest VIE Apply frequency encoding to the 'state' feature.
C) Use a variance threshold to remove highly correlated CDR features and create a feature representing the geographical region (e.g., 'Northeast', 'Southwest') based on the 'state' feature using a custom UDF.
D) Apply Principal Component Analysis (PCA) to reduce the dimensionality of the CDR features ('total_day_minutes', 'total_eve_minutes', 'total_night_minutes') and use one-hot encoding for the 'state' feature.
E) Create interaction features by multiplying 'total_day_minutes' with 'customer_service_calls' and applying a target encoding to the 'state' feature.
質問と回答:
質問 # 1 正解: D | 質問 # 2 正解: A、D | 質問 # 3 正解: D | 質問 # 4 正解: A、C、D、E | 質問 # 5 正解: C |